
Godkjenn
Release 7.0.0

Austin Bingham

Oct 11, 2021

CONTENTS:

1 Introduction 3

2 Godkjenn tutorial 5

3 Configuring godkjenn 13

4 Locating data 15

5 Indices and tables 17

i

ii

Godkjenn, Release 7.0.0

godkjenn /go:kjen/ Approve (Norwegian)

Approval testing for Python 3.

CONTENTS: 1

go:kjen/

Godkjenn, Release 7.0.0

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

Godkjenn is a test for performing approval testing in Python. Approval testing is a simple yet powerful technique for
testing systems that may not be amenable to more traditional kinds of tests or for which more traditional tests might not
be particularly valuable. Approval testing can also be extremely useful for adding tests to legacy systems where simply
capturing the behavior of the system as a whole is the first step in adding more sophisticated tests.

1.1 Principle

The principle of approval testing simple. Given a function or program that you consider correct, you store its output
for a given input. This is the accepted or golden version of its output. Then, as you change your code, you reproduce
the output (we call this received output) and compare it to the accepted version. If they match, then the test passes.
Otherwise, it fails.

A test failure can mean one of two things. First, it could mean that you actually broke you program and need to fix it so
that the received output matches the accepted. Second, it could mean the received output is now correct, the accepted
output is now out of date, and you need to update the accepted output with the received.

As an approval testing tool, godkjenn aims to streamline and simplify this kind of testing.

1.2 Core elements

There are a few core elements to godkjenn. These are the parts of the approval testing system that are independent of
any particular testing framework. Generally speaking, you won’t need to work with these directly; the integration with
your testing framework with hide most of the low-level details.

1.2.1 Vaults

Vaults are where the accepted outputs are stored. (The term vault is a bit of a play on words: the accepted output is
“golden”, and you keep gold in vaults.)

The vault abstraction defines an API for storing and retrieving accepted (and received) output.

godkjenn provides a simple vault, FSVault, that stores its data on the filesystem. Other vaults can be provided via a
plugin system.

3

Godkjenn, Release 7.0.0

1.2.2 Verification

The core verification algorithm compares new received data with the accepted data for a given test. If there’s a mismatch
or if not accepted output exists, this triggers test failure and instructs the user on what to do next.

1.2.3 Diffing

When an approval test fails, godkjenn provides tools for viewing the differences between the accepted and received
data. godkjenn comes with some very basic fallback diffing support, and it provides a way to run external diffing tools.
You can even have it use different tools for different types of files.

4 Chapter 1. Introduction

CHAPTER

TWO

GODKJENN TUTORIAL

This will take you through the process of installing, setting up, and using godkjenn for approval testing in a Python
project.

Note: This tutorial will use godkjenn’s pytest integration. Godkjenn does not mandate the use of pytest, though
currently it’s the only testing framework for which godkjenn provides an integration. Integrating with other frameworks
is straightforward and encouraged!

2.1 Installing godkjenn

First you need to install godkjenn. The simplest and most common way to do this is with pip:

pip install godkjenn

For pytest integration you’ll also want to install the necessary plugin:

pip install "godkjenn[pytest-plugin]"

2.2 A first test

Now let’s create our first test that uses godkjenn. Create a directory to contain the code for the rest of this tutorial.
We’ll refer to it as TEST_DIR or $TEST_DIR.

Once you have that directory, create the file TEST_DIR/pytest.ini. This can be empty; it just exists to tell pytest
where the “top” of your tests is.

Next create the file TEST_DIR/test_tutorial.py with these contents:

1 def test_demo(godkjenn):
2 test_data = b'12345'
3 godkjenn.verify(test_data, mime_type='application/octet-stream')

This will be mostly familiar if you’ve used pytest: it’s just a single test function with a fixture.

On line 1 we define the test function. The godkjenn parameter tells pytest that we want to use the godkjenn fixture.
This fixture gives us an object that we use for verifying our test data.

5

https://pytest.org

Godkjenn, Release 7.0.0

On line 2 we simply invent some test data. Notice that it’s a bytes object. Godkjenn ultimately requires all of its data
to be bytes, so for this tutorial we’ve just created some simple data. In practice, this data would be the output from
some function that you want to test.

Finally on line 3 we call godkjenn.verify(), passing in our test_data. This call will take the data we pass in and
compare it to the currently-accepted “golden” output. If the data we pass in does not match the accepted output, the
test is flagged as a failure. Similarly - as will happen for us - we’ll get a failure if there is no existing accepted output.

2.2.1 Running the test

Now we can run the tests with pytest. For now just run the test from TEST_DIR:

cd $TEST_DIR
pytest .

You should see some output like this:

$ pytest .
===␣
→˓test session starts␣
→˓===
platform darwin -- Python 3.8.0, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
rootdir: /Users/abingham/repos/sixty-north/godkjenn/docs/tutorial, configfile: pytest.ini
plugins: hypothesis-6.4.0, godkjenn-2.0.1
collected 1 item

test_tutorial.py F ␣
→˓ ␣
→˓ [100%]

==␣
→˓FAILURES␣
→˓===

→˓_____________________ test_demo ___
→˓___
There is no accepted data

If you wish to accept the received result, run:

godkjenn -C . accept "test_tutorial.py::test_demo"

===␣
→˓short test summary info␣
→˓===
FAILED test_tutorial.py::test_demo
==␣
→˓1 failed in 0.07s␣
→˓==

We see that - as expected - our test failed. The report tells us that “There is no accepted data”. This means that this
is the first time we’ve run the test and haven’t accepted any output for the test. We’re also given instructions on how
accept the output if we believe it to be correct.

6 Chapter 2. Godkjenn tutorial

Godkjenn, Release 7.0.0

This idea of of “accepting” output is central to the notion of approval testing. At some point we have to decide that our
code is correct and that the output it produces is indicative of that proper functioning. For now let’s assume that our
data is correct.

Status

Before accepting the data, let’s use the godkjenn status command to see the state of our approval tests:

$ godkjenn status

Test ID Status

test_tutorial.py::test_demo initialized

This tells us that we have one approval test in our system and that its state is “initialized”. This means that it has some
received data (i.e. the data from the test we just ran) but no accepted data.

Accepting the data

Since we believe that the data we passed to godkjenn.verify() represents the correct output from our program, we
want to accept it. We can use the command provided to us in the test output:

$ godkjenn accept "test_tutorial.py::test_demo"

Now if we run status we see don’t get any output:

$ godkjenn status

This is because all of our tests are “up-to-date”, i.e. all of that have accepted data and not received data. In order to
see the status of all test-ids, including those that are up-to-date, you can use the “-a/–show-all” options of the ‘status’
command:

$ godkjenn status --show-all

Test ID Status

test_tutorial.py::test_demo up-to-date

And that’s it! You’ve created your first godkjenn approval test and accepted its output.

2.3 Accepting new data

Over time, of course, your code may change such that its correct output no longer matches your accepted output. When
this happens your test will fail and you’ll have to accept the new data. To see this, let’s change our test_tutorial.py
to look like this:

1 def test_demo(godkjenn):
2 test_data = b'1234567890'
3 godkjenn.verify(test_data, mime_type='application/octet-stream')

2.3. Accepting new data 7

Godkjenn, Release 7.0.0

You can see on line 2 that test_data now has more digits. When we run our test we get a failure because of this
change:

$ pytest test_tutorial.py
===␣
→˓test session starts␣
→˓===
platform darwin -- Python 3.8.0, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
rootdir: /Users/abingham/repos/sixty-north/godkjenn/docs/tutorial, configfile: pytest.ini
plugins: hypothesis-6.4.0, godkjenn-2.0.1
collected 1 item

test_tutorial.py F ␣
→˓ ␣
→˓ ␣
→˓ [100%]

==␣
→˓FAILURES␣
→˓===

→˓___ test_demo _____________________________
→˓___
→˓____________________
Received data does not match accepted

If you wish to accept the received result, run:

godkjenn -C . accept "test_tutorial.py::test_demo"

===␣
→˓short test summary info␣
→˓===
FAILED test_tutorial.py::test_demo
==␣
→˓1 failed in 0.05s␣
→˓==

You can see the failure was because “Received data does not match accepted”. That is, the data we’re passing to
godkjenn.verify() doesn’t match the accepted data.

If we run godkjenn status again, we see a new status for our test:

$ godkjenn status

Test ID Status

test_tutorial.py::test_demo mismatch

The status “mismatch” means that the received and accepted data are different.

8 Chapter 2. Godkjenn tutorial

Godkjenn, Release 7.0.0

2.3.1 Seeing the difference

Our job now is to decide if the received data is correct and should become the accepted. To make this decision it can
be very helpful to see the accepted data, the received data, and the differenced between them.

To see the accepted data we can use the godkjenn accepted command:

$ godkjenn accepted "test_tutorial.py::test_demo" -
12345%

Similarly, we can see the received data using the godkjenn received command:

$ godkjenn received "test_tutorial.py::test_demo" -
1234567890%

In this case it’s pretty easy to see the difference. In other cases it might be more difficult. To help with this godkjenn
also lets you view the difference between the files with the godkjenn diff command. By default godkjenn diff
uses a very basic diff display:

$ godkjenn diff "test_tutorial.py::test_demo"
WARNING:godkjenn.cli:No review tools configured. Fallback differs will be used.

+++
@@ -1 +1 @@
-12345
+1234567890

Again, in a simple case like this, this default diff output is enough to make it clear what the difference is. In more
complex cases you might need more powerful tools, though, and we’ll look at how to use those soon.

2.3.2 Configuring an external diff tool

The built-in diff tool in godkjenn is sufficient for simple cases, but many people have other, more sophisticated diff tools
that they would prefer to use with approval testing. Godkjenn allows you to specify these tools in your configuration.

For this tutorial we’re going to configure godkjenn to use Beyond Compare as its default diff tool. To do this you need
to create the file “.godkjenn/config.toml”. Put these contents in that file:

[godkjenn.differs]
default_command = "bcomp {accepted.path} {received.path}"

This is telling godkjenn to run the command “bcomp” (the Beyond Compare executble) to display diffs. The first
argument to “bcomp” will be the path to the current accepted data, and the second is the path to the received data.
With this configuration, whenever godkjenn needs to display a diff (e.g in the “diff” and “review” commands), it will
use “bcomp”.

If you don’t have Beyond Compare installed, you can replace “bcomp” with many other commands like “diff”, “vimdiff”,
and “p4diff”.

Once you’ve made this change, you can run your godkjenn diff command again and see your configure diff tool being
used.

Note: Godkjenn supports fairly sophisticated configuration of diff tools, allowing you to use different diff tools for
different MIME types. See the configuration documentation for details.

2.3. Accepting new data 9

https://beyond-compare.en.softonic.com/

Godkjenn, Release 7.0.0

2.3.3 Accepting the new data

We’ll assume that our new data is actually correct and accept it:

godkjenn accept "test_tutorial.py::test_demo"

Once we do that we see that our status is back to “up-to-date”:

$ godkjenn status --show-all

Test ID Status

test_tutorial.py::test_demo up-to-date

2.4 Reviewing multiple tests

The godkjenn diff command lets you view the difference between the accepted and received data for a single test. In
many cases, though, you have several - and in some cases a great many - tests for which you need to see the diff. The
godkjenn review command lets you view all of the diffs for ‘mismatch’ tests in sequence.

In effect, the review command calls diff for each test that’s in the mismatch state, one after the other, using the diffing
tools that you’ve configured.

To see review in action, let’s first add a new test. Here’s the new contents of “test_tutorial.py”:

def test_demo(godkjenn):
test_data = b"1234567890"
godkjenn.verify(test_data, mime_type="application/octet-stream")

def test_second_demo(godkjenn):
test_data = b"8675309"
godkjenn.verify(test_data, mime_type="application/octet-stream")

We’ll run the tests and accept the received data in order to lay a foundation for running review:

$ pytest test_tutorial.py
== test session starts␣
→˓===
platform darwin -- Python 3.8.0, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
rootdir: /Users/abingham/repos/sixty-north/godkjenn/docs/tutorial/sandbox, configfile:␣
→˓pytest.ini
plugins: hypothesis-6.4.0, godkjenn-4.0.0
collected 2 items

test_tutorial.py FF ␣
→˓ [100%]

== FAILURES␣
→˓==
___ test_demo _____________________
→˓_____________________________________

(continues on next page)

10 Chapter 2. Godkjenn tutorial

Godkjenn, Release 7.0.0

(continued from previous page)

Received data does not match accepted

If you wish to accept the received result, run:

godkjenn -C . accept "test_tutorial.py::test_demo"

__ test_second_demo _________________
→˓_____________________________________
There is no accepted data

If you wish to accept the received result, run:

godkjenn -C . accept "test_tutorial.py::test_second_demo"

== short test summary info␣
→˓===
FAILED test_tutorial.py::test_demo
FAILED test_tutorial.py::test_second_demo
=== 2 failed in 0.03s␣
→˓==
$ godkjenn accept-all

Now we’ll modify the tests so that each produces different output:

def test_demo(godkjenn):
test_data = b"-- 1234567890 --"
godkjenn.verify(test_data, mime_type="application/octet-stream")

def test_second_demo(godkjenn):
test_data = b"-- 8675309 --"
godkjenn.verify(test_data, mime_type="application/octet-stream")

If you run the tests again, godkjenn status shows that both tests are in the ‘mismatch’ state:

$ pytest test_tutorial.py
... elided ...
$ godkjenn status

Test ID Status

test_tutorial.py::test_second_demo mismatch
test_tutorial.py::test_demo mismatch

Now if you run godkjenn review, godkjenn will run your configured diff tool twice, once for each test, letting you
view and potentially modify the accepted data.

Critically, if the received and accepted data are identical after godkjenn runs your diff tool (i.e. if you edit them through
your diff tool), then godkjenn will accept the data and mark them as ‘up-to-date’. This gives you a conventient way
to rapidly iterate through a set of received data, verifying each in turn and rapidly updating the accepted data for each
affected test.

2.4. Reviewing multiple tests 11

Godkjenn, Release 7.0.0

Note: The godkjenn review command can be very useful if you’ve a collection of received data for which you need
to manually verify each one. However, if you somehow know that all of the received data should be accepted, then it’s
even faster to use the godkjenn accept-all command.

12 Chapter 2. Godkjenn tutorial

CHAPTER

THREE

CONFIGURING GODKJENN

Godkjenn support some minor configuration through the file config.toml in the data directory. This file must contain
a top-level ‘godkjenn’ key, for example:

[godkjenn]

Everything under this key is part of the godkjenn configuration.

3.1 Configurable options

3.1.1 differs.default_command

The godkjenn.differs.default_command option specifies the default tool to use for displaying diffs. The value
is a template used with the str.format() method that is passed Artifact instances for the received and accepted
data. The call looks like this:

command_template = . . . value of differs.default_command . . .
command = command_template.format(accepted=accepted_artifact, received=received.artifact)

As you can see, the artifacts are passed using the ‘accepted’ and ‘received’ keyword arguments.

A common template value would extract the path attribute from each artifacts and use those as arguments to a
diff/merge tool. For example, here’s a config that passes the artifact paths to vimdiff:

[godkjenn.differs]
default_command = "vimdiff {accepted.path} {received.path}"

This option is only used if there is not a MIME-type-specific tool defined in godkjenn.differs.mime_types.

3.1.2 differs.mime_types

The godkjenn.differs.mime_types option allows you to specify diff commands for specific MIME-types. It is a
mapping from MIME-types to command template (as described in the differs.default_command option). When
godkjenn needs to run a diff tool for an artifact the MIME-type of the received data is looked up in the differs.
mime_types mapping, and if it’s found then the value is used as the command template. If no match is found, then
differs.default_command is used as the default.

For example, here’s how you could specify that the image-diff tool should be used for PNGs, vimdiff should be
used for plain text, and bcomp for everything else:

13

http://vimdoc.sourceforge.net/htmldoc/diff.html#vimdiff

Godkjenn, Release 7.0.0

[godkjenn.differs]
default_command = "bcomp {accepted.path} {received.path}"

[godkjenn.differs.mime_types]
"image/png" = "image-diff {accepted.path} {received.path}"
"text/plain" = "vimdiff {accepted.path} {received.path}"

Note: If there is no differs.mime_types entry for an artifact, and if differs.default_command is not set,
godkjenn fallsback to some fairly primitive built-in diffing tools. You’re almost always best off configuring at least the
differs.default_command options.

14 Chapter 3. Configuring godkjenn

CHAPTER

FOUR

LOCATING DATA

4.1 TL;DR

Tell godkjenn where to start looking for the data directory with the -C option. Tell it the name of the data directory
with the -d options. E.g. godkjenn -C tests -d .godkjenn_dir status.

-C defaults to “.” (i.e. the current directory), and -d defaults to “.godkjenn”.

4.2 Overview

Godkjenn stores data for each call to verify() in your tests. The data it stores includes any accepted or received data
for the test, as well as any metadata required for the other data (e.g. mime types, encoding, etc.). Godkjenn wraps all
of this up in the concept of a vault, and the vault stores this data on the filesystem.

When you run godkjenn, it needs to know where to find the vault data. It find this based on two pieces of data: a starting
directory and the name of the data directory. By default the starting directory is whichever directory you run godkjenn
from. Similarly, the default value for the data directory name is “.godkjenn”. Godkjenn starts by looking for the data
directory name in the starting directory. If it doesn’t find it, it checks the parent of the starting directory. It continues
looking up the ancestor directories until either a) it find a directory containing the data directory or b) it runs out of
ancestors.

Assuming a data directory is found, godkjenn now has the information it needs to run.

4.3 An example

Suppose you had a directory structure like this:

my_project/
tests/

.godkjenn

Here the “.godkjenn” directory is the data directory that godkjenn needs to find.

The simplest mode for godkjenn is if you run it from the ‘tests’ directory:

cd my_project/tests
godkjenn status

15

Godkjenn, Release 7.0.0

Run this way, godkjenn will find the “.godkjenn” directory using its default settings. It will first start its search from
the “tests” directory because that’s where we’re running godkjenn from. Since by default it looks for a directory called
“.godkjenn”, it will find it immediately.

4.3.1 Specifying a start directory

Suppose though that you wanted to start godkjenn from another directory. If we wanted to start godkjenn from the
‘my_project’ directory we’d need to tell it where to start looking for “.godkjenn”. We can use the -C command line
argument to do this. Here’s how it looks if we start godkjenn from the ‘my_project’ directory:

cd my_project
godkjenn -C tests status

In this case, instead of starting the search in the “my_project” directory as it would by default, godkjenn starts the
search from the ‘tests’ directory.

4.3.2 Using a different data directory name

While unusual, it is technically possible to use a different name for the data directory. Suppose you instead had this
directory structure:

my_project/
tests/

.godkjenn_data

You can tell godkjenn to look for a different name with the -d command line option. For example, to run godkjenn
from the ‘my_project’ directory with this structure you’d use this:

cd my_project
godkjenn -C tests -d .godkjenn_data status

Again, you won’t normally need this, but it’s there if you do.

4.4 Creating the data directory

Probably the most common way to create the data directory is to let godkjenn do it for you automatically. This generally
happens in one of two ways. First, when you run tests using the pytest integration, it will create a “.godkjenn” directory
in the pytest root directory. Pytest uses a fairly involved algorithm to determine the location of the root directory.

Another way to create the data directory is with the pytest receive command. If no existing data directory exists
(as determined by the algorithm described above), then this command will try to create a “.godkjenn” directory in your
current directory. If you use the -C and/or -d arguments to change where godkjenn starts its search, then godkjenn
receive will create the directory there instead.

If you don’t want godkjenn receive to create a directory, you can pass the “–no-init” argument.

16 Chapter 4. Locating data

https://docs.pytest.org/en/stable/customize.html#finding-the-rootdir

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

17

	Introduction
	Principle
	Core elements
	Vaults
	Verification
	Diffing

	Godkjenn tutorial
	Installing godkjenn
	A first test
	Running the test
	Status
	Accepting the data

	Accepting new data
	Seeing the difference
	Configuring an external diff tool
	Accepting the new data

	Reviewing multiple tests

	Configuring godkjenn
	Configurable options
	differs.default_command
	differs.mime_types

	Locating data
	TL;DR
	Overview
	An example
	Specifying a start directory
	Using a different data directory name

	Creating the data directory

	Indices and tables

